On Bethe vectors in g l 3 $$ \mathfrak{g}{\mathfrak{l}}_3 $$ -invariant integrable models
نویسندگان
چکیده
منابع مشابه
Bethe–Salpeter wave functions in integrable models
We investigate some properties of Bethe–Salpeter wave functions in integrable models. In particular we illustrate the application of the operator product expansion in determining the short distance behavior. The energy dependence of the potentials obtained from such wave functions is studied, and further we discuss the (limited) phenomenological significance of zero–energy potentials.
متن کاملDrinfeld Twists and Symmetric Bethe Vectors of Supersymmetric Fermion Models
We construct the Drinfeld twists (factorizing F -matrices) of the gl(m|n)invariant fermion model. Completely symmetric representation of the pseudoparticle creation operators of the model are obtained in the basis provided by the F -matrix (the F -basis). We resolve the hierarchy of the nested Bethe vectors in the F -basis for the gl(m|n) supersymmetric model.
متن کاملSOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION
Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2018
ISSN: 1029-8479
DOI: 10.1007/jhep06(2018)018